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ABSTRACT 

We recently developed a novel method based upon reciprocity principles to estimate seismic moment tensor estimation of localized 

induced and natural seismicity arising in 3D heterogeneous media. The method finds the optimal event location and corresponding 

moment tensor estimates. Because the method uses an exhaustive search of the 3D media it is globally convergent. It does not suffer 

from local minima realization observed with local optimization methods, including Newton, Gauss-Newton or gradient descent 

algorithms. The computational efficiency of our scheme is derived from the reciprocity principle, where the number of 3D model 

realizations corresponds to the number of measurement detectors. 3D forward modeling is carried out in the damped Fourier domain 

with the 3D finite-difference code that generates P- and S-waves from the point sources defined by second-order moment tensors. We 

present results of testing this new FWI moment tensor methodology on the synthetic data for the Raft River geothermal field, Idaho, as 

well as demonstrate its applicability in designing optimal borehole monitoring arrays in the SIGMA-V fracking experiment at the 

Homestake Mine, South Dakota. The SIGMA-V experiment seeks to better understand the relationship between stress, seismicity and 

permeability enhancement in order to advance enhance geothermal system development. 

1. INTRODUCTION 

During the last years the considerable attention have been turned for monitoring microseismic events in hydraulic fracturing as a 

diagnostic tool for fracture growth. Another problem demands increasing attention concerned with induced seismicity not only because 

it potentially has damaging effects, but also can be used to characterize reservoir compaction due to oil/gas and geothermal steam 

production. These events are characterized by small magnitude and more high frequency than their tectonic counterparts. Frequency 

content of microseismic events and small magnitude induce seismicity usually ranges between 2 Hz-100 Hz, 2 to 3 orders higher in 

frequency than the tectonic ones (Li et al., 2011). Analysis of such events is more challenging because of complicated wavefields. For 

example, in reservoirs with faults and strong horizontal velocity variations, ray-tracing is often challenged. Even when ray-tracing 

succeeds, it is very likely that one particular phase is predicted while a different phase is picked in the observed data, resulting in phase 

mismatch and mislocation of events. Therefore, it would be desirable if waveforms can be directly utilized to locate the events and 

moment tensor inversion. Unfortunately, if observed waveforms are used directly, we need to generate synthetic waveforms for 

matching. Since the source locations unknown, we need to test synthetic traces from all possible source locations. Additionally, since 

our velocity model is only an approximation to the true subsurface structure, the higher the frequencies we want to use and the larger the 

source-receiver distance, the greater the probability of cycle skipping between observed and predicted waveforms resulting in a local 

minima realization in the inversion process.  

In this paper we present a novel full waveform method based on the reciprocity theorem that addresses the aforementioned challenges to 

efficiently locate events while performing simultaneous full moment tensor inversion of the events. 

2. METHODOLOGY 

The methodology of joint location and moment inversion requires a 3D velocity model of subsurface volume for potential locations and 

source moment of the events. It seeks to match of observed waveform data in Laplace-Fourier domain. The 3D velocity model is a priori 

information, which may be obtained from previous studies and derived from well cores, active source data or sonic logs. We propose 

that detectors record displacement velocity components  ,q tv x of the wave generated by a seismic event. 

      
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where  tG  is an the instrument response of the recorded seismogram. 

The observed time–domain waveforms  obs

q td  are transformed to Laplace-Fourier domain for the set of different complex frequencies 

j j js i    ( 1i   ): 



Newman and Petrov 

 2 

          
0

; , , 1... , 1... .js tobs

q j j q j q j q s qs G s s s t e dt j N q N




   d v v v x  (2) 

where j  is the Laplace damping constant; j  is the angular frequency. Below for the simplicity we propose   1jG s   

The wavefield  ,q jsv x is the solution at  point qx  of the elastic equations in the Laplace-Fourier domain, which can be directly 

obtained taking the integral transform of the time-domain system for velocity and stress formulation (Virieux, 1986) 
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where , ,x y zv v v  are the velocity wave-field components,  ; , , ,pq p q x y z   are the stress tensor components, f  is body force per unit 

volume, m is the moment tensor density of a seismic event,  symbols  , ,v  D D  respectively denote the partial differential operators, 

where  r  and  r   are elastic bulk and share moduli of the media (Petrov, Newman 2012, 2014). 

The general reciprocity theorem for the elastic equations (3) gives the next integral expression, which connects parameters of a seismic 

source ,ij im f  and velocity component  iv x  at position x ( Aki and Richards, 2009; Aldridge and Symons, 2001): 

      0 , , , , ,R R R

ij j i i i l ldV m v f v f v i j l x y z     x x   (4) 

Here  R

lf x is some force applied in the same direction l  and position x  as velocity  lv x , R

iv   is the velocity component generated 

by this force. It should be noted that both velocities , Rv v  satisfy the same system of equation (3) but with different source terms. 

Since usually a receiver measures velocity at a fix point qx  let’s define forces  R

lf x  other than zero only at the receiver position qx  

for each 1... qq N : 

    R q

l l qf f  x x x . (5) 

In this case, relation (4) can be rewritten as follows 

              , , , , , ; 1...R R R

ij j i i i l q l q qm v f v dV f v i j l x y z q N     x x x x x x  (6) 

The point source is defined by the moment tensor 
S

M  at position 
sx  

    s s

s m x M x x  . (7) 

Here we assume there is no need for a body force for the point source description. The integral relationships transform to a system of 

linear equations 

    
,

, , , , , ; 1..q qR Rs

ij j i s l l q q

i j l

M v f v i j l x y z q N    x x   (8) 

For the simplicity let’s assume that each receiver measures only one velocity component
lv . It means that if a receiver measures all 

three components of the velocity field we consider it as three independent receivers at the same space point but with different velocity 

components. Equation (8) results in: 

    ,

,

, , , , , ; 1..s q k q

ij j i s k k q q

i j

M v f v i j k x y z q N    x x   (9) 



Newman and Petrov 

 3 

Here  ,q k

i sv x  is the value at 
sx  i - component of the velocity generated by k - component of force placed at receiver position qx . 

Because (9) are valid for any values of q

kf  different from zero we set q

kf  be equal to  1/ k qv x  and obtain a system, where the number 

of equations is equal to the number of “one component” receivers 
dN   
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or the matrix form  
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Instead of calculating B  at the source position, which is unknown we can define it everywhere inside a region of possible event 

locations. For this purpose it is necessary to obtain 
dN  different solutions of elastic equations for each “one component” receiver 

separately: 
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and perform differentiation on the velocity field. Here k is a unit vector directed along measured velocity component  k qv x .  

Uniqueness of the elastic problem solution guarantees only one point
sx , where all equations are true. For all other points 

sx x  the 

reciprocity condition will be violated. That means that the problem of the source position and moment tensor definition can be solved by 

searching for a point inside the region, where all equations are satisfied or effectively minimizing the objective functional Q  expressed 

by the residuals between vectors 
s

BM  and E . At the correct source position we would have 

   0Q  BM E  , (13) 

but with measurement noise and unknown errors in the assumed velocity model we seek a minimum in the objective function, instead. 

This minimization can be easily and very efficiently realized by exhaustive search for all possible space points. For this purpose, for 

each x  in the examination region the solution of normalized equation is defined: 

         
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And response at the receiver’s position is calculated 

    xq B x M x   (15) 

Vector  ,1 ,2 ,...
dN

q q qx x x xq  is taken for the construction of the objective function 
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The source position is determined by exhaustive search for point inv
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   min 0Q 
x

x . (17) 

The main advantages of such approach are concerned with the unique definition of the minimum of (17) that does not require  

non linear inversion iterations and provides a simultaneous definition of the moment tensor, which can be obtained by equation (14) at 

point inv

sx  

       
1

s T inv inv T inv

inv s s s



 M B x B x B x E   (18) 

For the exact velocity model of media and data without any noise this method gives the exact position of the point seismic event and it 

moment tensor. 

For the fix position of survey there is no necessity to solve system (12) for the inversion of each seismic event over again. It is enough 

to solve it once for   , 1...k q dq N f x k . As a matter of fact this is the calculation of strain Green’s tensor (Zhao, Chen, and 

Jordan,2006). Because of linearity the elastic problem, elements of matrix B  will be defined by multiplying corresponding rows of 

strain Green’s tensor by factor ,  1 k qv x  which are defined by current seismic event. The following definition of a source location and 

moment tensor (14)-(18) is fast because it does not require expensive calculation and may be very efficient for seismic monitoring 

applications. 

If the moment tensor has some space distribution different from point source distribution, then the minimum of (17) cannot reach zero 

and instead of algebraic system (10) we still have 
dN   integral relations: 
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where integration performs over the volumes  , 1...5dV d  . 

The simplifying assumption is to suppose each moment tensor component be a constant inside the defined volume and after 

implementation of the mean-value theorem it can be rewritten as: 
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The system (20) has the same structure as equations (10) but instead of calculating velocity derivatives at a point it is necessary to 

calculate them over some unknown volumes. For this case the minimum of objective function 
distrQ  can be provided in two steps. First, 

the hypocenter and moment tensor of the seismic event are defined by (17)-(18).  Second, using information about the moment tensor of 

a point source the different configurations of specific volumes  , 1...5dV d   can be tested through the different patterns in size and 

form around inv

sx  by the additional exhaustive search. The optimal configuration is realized when  int

inv

distr po sQ Q x . 

So, the global minimum for distributed seismic source is defined by the exhaustive search for hypocenter and different patterns around 

it. 

The described method defines event location and moment tensor for the fix complex frequency. To define the evolution of moment 

tensor in the time domain it is necessary to perform inversion for the set of frequencies through inverse Laplace-Fourier transformation. 

3. SYNTHETIC EXAMPLES 

When making reference to previous work, please follow the scientific format, e.g. Verma and Pruess (1976). 
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3.1 Raft River 3-D elastic model 

3.1.1 Point source parameters inversion 

For the algorithm validation we use the part of 3D Raft River velocity model designed by Nash and Moore (2012). To reduce both the 

required memory and computing time, we used a part of this model, which contains eight LBNL seismic stations. The model is rotated 

so that Narrows Zone aligns along the X-axis with a broadside extension of 396 5724,1068 y 5148x    (in meters). The depth 

extend of the model is  0 2256z   (in meters). The distribution of P-wave velocities in the planes 3600x   and 2000z  m are 

shown in Figures 2. Synthetic data were generated by the Laplace-Fourier domain finite-difference modeling technique (Petrov and 

Newman 2012). The number of grid nodes was 111 85 47   with the grid spacing of 48 m. A free surface boundary condition was 

imposed on the surface z=0. On the other boundaries the perfectly match layer (PML) boundary condition was applied. 

Each seismic station records three components of velocity displacement near the surface. So, there are twenty four “one component” 

receivers in eq. (12) 24dN  . The projections of survey geometry are presented in Figure 2. The position of microseismic source was 

near the Narrows zone at point 3996, 3612, 1680s s sx y z    meters. The value of the normalized moment tensor included all 6 

components: 
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Figure 1: P-wave velocities of the Raft River elastic model and seismic survey geometry. 

 

The inversion was performed at frequency f =3 Hz with damping constant 6   1/s. The behavior of objective function Q  is shown 

in Figure 2. 

   

a) b) c) 

Figure 2: Profile of objective function along X-distance (a), profile of objective function along depth (b), distribution of objective 

function in XY- plane at the source depth 
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 The minimum of Q  gives exact location and moment tensor of the point source within the accuracy of numerical solution. 
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3.1.2 Stochastic data noise and velocity model uncertainty influence 

For the estimation of the data noise influence on inverted results, random Gaussian noise (with the variance equal to 5 and 10%) obs

qd  

was added to the synthetic data obs

qd : 

 , 1... .stc obs obs

q q q qq N   d d d  (23) 

The exact velocity model was applied. Inversion with 100 realizations of different values obs

qd shows that stochastic noise in data does 

not have essential influence to the source location definition. Deviation from the exact location is not more than one cell size. Moment-

tensor components are more sensitive to the magnitude of the noise (Table 1) but for the largest components it keeps the same level of 

errors as data noise. 

To investigate sensitivity inversion to the velocity model we generated three inexact models, which were obtained by smoothing the all 

attributes of exact distribution (density, ,s pV V ) (Petrov, Newman, 2017). The difference between models is characterized by the relative 

error: 

 , , , *100%exact smooth exact

m p s p s p se V V V    (24) 

Despite the difference between exact and assumed models, the errors in the estimated source coordinates are less than one cell size 

(Table 1), but moment-tensor elements are more sensitive to the assumed velocity model.  Increasing errors 
me  leads to the 

corresponding errors in the moment tensor estimates, although relations between different components are still approximately conserved 

(Table 1). 

. 

Table 1: Influence of data stochastic errors and velocity model uncertainty for moment tensor inversion 

Moment 

tensor 

components 

Exact 

value 

Inverted value 

for inexact 

model 6%me   

Inverted value 

for inexact 

model 

9%me   

Inverted value 

for inexact 

model 

12%me   

Deviation 

from exact 

values (%) 

for data 

stochastic 

noise 5% 

and exact 

model 

Deviation 

from exact 

values (%) for 

data 

stochastic 

noise 10% 

and exact 

model 

xxM   0.5 0.445 0.1 -0.22 7 23.7 

xyM  0.2 0,255 0.15 0.03 5.8 24.8 

xzM  1.0 0.89 0.91 0.82 2.2 8.5 

yyM  0.5 0.44 0.23 0.14 4.2 10.4 

yzM  0.1 0.0255 0.034 0.07 14.3 85.6 

xxM  -1 -0.864 -0.94 -0.825 3.1 7.5 

 

3.2 SIGMA-V fracking experiment 

The SIGMA-V fracking experiment is the part of the EGS Collab project (Dobson et al, 2017). This project provides the basis to better 

understanding of the creation of fracture geometries during stimulation, and possibilities to imaging them. This is an important problem 

with important applications in stimulating enhanced geothermal systems. In the SIGMA-V experiment, comprehensive micro-seismic 

instrumentation will be used to collect high-quality and high resolution data, along with other types of geophysical measurements for 

fracture characterization and fluid flow. The experiment is within a drift located approximately 1.6 km beneath the surface. Four parallel 

boreholes and two orthogonal boreholes are used to acquire seismic data during the experiment (Figure 3a). One of the key parameters 

of fracture characterization is moment tensors and location of microseismic events. We use the same borehole configuration and 
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geophone distribution to conduct numerical study on sensor locations and components in order to assess the accuracy of moment-tensor 

inversion in an experiment design study. For simplicity the Z-axis is defined along the production well (Figure 3b). 

3.2.1 Source parameters inversion 

We propose eleven receiver positions in each monitoring well with a 3 meter interval. According to the experiment scheme the fracture 

zones will be in three planes perpendicular to the production well at z=-12, 0 and 12 meters. For each plane 16 different seismic source 

positions were examined at 4, 4 , 8, 8 , 12,, ( ) ( ) ( 12 , 16, 16) (  )s sx y         meters. In each case moment tensor components were 

0.1; 0.06; 0.04; 0.1; 0.04; 1xx xy xz yy yz zzM M M M M M       . We assumed the surrounding media homogeneous with 

5500, 2300p sV V  m/s and density 2300 kg/m3. Synthetic data were generated by the Laplace-Fourier domain finite-difference 

modeling technique (Petrov and Newman 2012) with cell size 0.5 m. The inversion was performed for frequencies 100 and 300 Hz with 

damping constant 6 s-1. The typical result of the source location inversion is shown in Figure 4 for the source position 

8, 8, 0s s sx y z     m and 36 one-component receivers directed along wells (6 receivers with interval 6m in each well). The inverted 

moment tensor coincidences with the exact one. 

  

a) b) 

Figure 3: Experiment geometry (blue is injection well, red -production wells, gray-monitoring wells (a). simulation geometry (b) 

 

   
a) b) c) 

Figure 4: Profile of objective function along X-distance (a), profile of objective function along depth (b), distribution of objective 

function in XY- plane at the source depth 

 

We considered more than 60 different configurations of survey in three and four wells:  

 one-component receivers along well direction; 

 one-component receivers perpendicular to the well direction; 

 three-component receivers; 

 combination of one-component receivers with different directions in different wells; 

 combination of one- and three-component receivers in different wells. 
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For all source positions and all variants of survey our method gave correct position of seismic event and exact value of moment tensor. 

However the sensitivity of different surveys to the data noise are different and may be estimated from properties of     
1

T inv inv

s s



B x B x : 

     
1

max

min

~ T inv inv obs obs

s s


  





M B x B x d d   (25) 

where condition number= max

min




 is the relation of largest eigenvalue of  matrix      

1
T inv inv

s s



B x B x to the smallest one 

The small condition numbers correspond to robust configurations. For current design of monitoring wells (Figure 3) the most robust and 

worse configurations for one component receivers are shown in Table 2: 

Table 2: Robustness of one-component receivers survey 

Configuration Condition 

number 

Direction in 

Well #1 

Direction in 

Well #2 

Direction in 

Well #3 

Direction in 

Well #4 

Direction in 

Well #5 

Direction in 

Well #6 

Max condition 

number 

z z z x x x 26 

z z z z x x 26.7 

z x z z x z 25.7 

y z z y x x 26.2 

z y x x x x 115 

 

For the three-component receivers the configuration close to optimal is 3 receivers with interval 15 m 

3.2.2 Stochastic data noise 

For the estimation of the data noise influence for inverted results random Gaussian noise (with the variance equal to 5 and 10%) was 

added to the synthetic data obs

qd . We examined the event situated at the boundary of investigated region 12, 12, 0s s sx y z   m and 

survey from one component receivers (first row in Table 2). As for the previous case (Raft River model) the influence of data stochastic 

noise to source location is pretty small (deviation from exact position is less than one cell size). For moment tensor the results are in 

Table 3.  The level of error in inverted parameters corresponds to the noise level. 

Table 3: Influence of data stochastic errors for moment tensor inversion 

Moment Tensor component Exact value Gauss noise 5 % Gauss noise 10 % 

xxM   0.1 15% 30% 

xyM  0.06 12% 20% 

xzM  0.04 45% 45% 

yyM  0.1 15% 28% 

yzM  0.04 5% 10% 

xxM  -1.0 4% 6% 

 

6. DISCUSSION 

Comparing reciprocity FWI results with the other inversion of the moment tensor is beneficial in investigating seismic events in 

complex 3D heterogeneous media, because it provides exact solution of the problem for the correct 3D velocity model, which may be 

critical for understanding physical processes if the structure of microseismic sources is considered as a marker of fluid-related processes 

when stimulating geothermal systems. The method is very economic because does not require any iteration process, which is 

characteristic of other non-linear full waveform inversion methods for source moment characterization. Moreover, with a stationary 

monitoring survey it is necessary to solve 3d elastic problem only 
dN  times, which is defined by the receivers number. As the result of 

this approach we obtained Laplace-Fourier image of moment tensor and theoretically after inverse transformation possibilities to define 

dynamic moment tensor. 

The method does not request any initial approximation of a source location. The inverted source position may be different for different 

frequencies that theoretically allow proposing a possibility of tracking the changes in the source mechanism and position during a 

microearthquake in time and estimating its volume.  



Newman and Petrov 

 9 

7. CONCLUSION 

We presented a novel FWI method based on the reciprocity theorem for the estimation of microseismic sources parameters (location and 

moment tensor) in Laplace-Fourier domain for 3D elastic heterogeneous media. The stability of the algorithm was tested for the input 

data contaminated with Gaussian noise and inexact velocity models. In noise-free tests the method guarantees the exact values of the 

source parameters. In the variance of the noise and inexact velocity model the inversion method produces good source location and 

approximate values of moment tensor components with the errors corresponding to the noise magnitude and velocity model deviations. 

The methodology was tested on a synthetic data set generated for Raft River geothermal area and SIGMA-V experiment. 
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